- COUPURE ÉLECTRIQUE
- Lors du retour de l'alimentation électrique ou au départ de la génératrice, les équipements électromécaniques (tels que les refroidisseurs, pompes, etc.) sont remis en fonction, en séquence, afin d'éviter une surcharge. Prévoir des délais programmables de départ pour chaque équipement commandé. De même, lors d'une panne électrique, ouvrir les contacts des équipements pour redémarrer en séquence.

SÉQUENCE DE FONCTIONNEMENT GROUPE DE SURPRESSION

- Les pompes de secours sont alternées toutes les semaines afin de maintenir le même niveau d'usure sur toutes les pompes. Sur perte de l'état de marche pour plus de 60 secondes, démarrer l'équipement de relève.
- Le démarrage des pompes primaires se fait selon le besoin en débit et le fonctionnement du refroidisseur. Selon le principe Une pompe = un refroidisseur.
- La modulation des pompes primaires se fait selon la pression différentielle mesuré sur le réseau primaire.
- Démarrage des pompes secondaires selon variation de la pression mesurée sur le réseau secondaire grâce à une sonde de pression différentiel. La vitesse de la pompe secondaire est modulée via l'API afin de maintenir la pression de la colonne la plus défavorisée.
- Les groupes de pompages intègrent un système intelligent de régulation à pression constante, permettant une auto réglable avec précision des débits. Le couple de démarrage des pompes doit être élevé

III. SÉQUENCE DE FONCTIONNEMENT REFROIDISSEURS À CONDENSEURS À AIR

- Le système est mis en marche lorsqu'au moins un des robinets motorisés des ventilo-convecteurs est ouvert à plus de 10%.
- Le système est arrêté lorsque tous les robinets motorisés des ventilo-convecteurs sont fermés depuis plus de vingt (20) minutes
- La gestion de la production d'eau glacé se fait d'une manière automatique depuis le panneau de régulation (API).
- Le refroidisseur doit permettre un mode qui veut dire refroidissement sans activation du compresseur. • Sur perte de l'état de marche pour plus de 60 secondes, démarrer l'équipement de relève.
- Les robinets de contrôles des refroidisseurs sont modulés selon besoin des refroidisseurs.
- A l'arrêt du système les robinets de contrôle sont fermés, les pompes et les refroidisseurs sont fermés. Le refroidisseur s'arrête sur manque de débit via les détecteurs de pression différentielle.
- Le refroidisseur démarre uniquement lorsque l'écoulement d'eau est établi via les détecteurs de pression différentielle (ΔP).
- La température d'alimentation est définie comme la température à la sortie de l'évaporateur du refroidisseur à condensation.
- Les démarrages et la modulation des refroidisseurs se fait selon la température d'alimentation. La température d'alimentation de consigne de l'eau doit être ajusté selon la température extérieure suivante :

T-EXT	P.C T-ALIM
≥ 25°C	7°C
≤ 25°C	10°C

la température de consigne de l'eau peut aussi être ajusté selon la saison par l'opérateur à partir du panneau de régulation

- La température de consigne de température d'alimentation est maintenue entre 7°C et 10°C réajusté par les demandes de refroidissement de façon à maintenir l'ouverture à un maximum de 95% des robinets des ventilo-convecteurs.
- Lorsqu'un robinet motorisé d'un ventilo-convecteur est ouvert à plus de 95%, la température d'alimentation de consigne diminue graduellement. Lorsque le robinet de ventilo-convecteur le plus ouvert, est ouvert à moins de 75%, alors le point de consigne de température d'alimentation augmente graduellement.
- Le refroidisseur à vitesse variable prioritaire démarre lorsque les conditions suivantes sont réunies : Le refroidisseur variable prioritaire est à l'arrêt depuis au moins dix (10) minutes.
- La température d'alimentation du réseau de refroidissement est supérieure à son point de consigne de plus de 1°C.
- Le panneau de régulation (API) module le refroidisseur à vitesse variable pour maintenir la température d'alimentation à son point de consigne.
- Lorsque les refroidisseurs à vitesse variable prioritaire sont en fonction simultanément, le panneau de régulation (API) module à la baisse le refroidisseur à vitesse variable prioritaire jusqu'à ce que la température d'alimentation atteint son point de consigne.
- Le refroidisseur à vitesse variable secondaire démarre lorsque les conditions suivantes sont réunies :
- Le refroidisseur à vitesse variable secondaire est à l'arrêt depuis au moins dix (10) minutes.
- Le refroidisseur à vitesse variable prioritaire est à 90% de sa capacité. Les refroidisseur à vitesse variable primaire est en fonction depuis au moins dix (10) minutes
- La température d'alimentation du réseau de refroidissement est supérieure à son point de consigne de plus de 1°C.
- Lorsque les refroidisseurs à vitesse variable (prioritaire et secondaire) sont en fonction simultanément, le panneau de régulation (API) module les refroidisseurs à vitesse
- variable prioritaire et secondaire jusqu'à ce que la température d'alimentation atteint son point de consigne. Le refroidisseur à vitesse variable secondaire commande à l'arrêt lorsque les conditions suivantes sont réunies :
- Le refroidisseur à vitesse variable secondaire est en marche depuis au moins dix (10) minutes. o Le point de consigne de la température d'alimentation d'eau est satisfait depuis au moins dix (10) minutes ou la température d'alimentation d'eau est inférieure à son
- point de consigne de plus de 1°C. La moyenne de la capacité des deux (2) refroidisseurs variables est inférieure à 60% depuis au moins dix (10) minutes.
- Le refroidisseur à vitesse variable prioritaire commande à l'arrêt lorsque les conditions suivantes sont réunies : Le refroidisseur à vitesse variable prioritaire est en marche depuis au moins dix (10) minutes.
- Le refroidisseur à vitesse variable secondaire (prioritaire et secondaire) secondaire sont à l'arrêt depuis au moins dix (10) minutes.
- Le point de consigne de la température d'alimentation d'eau est satisfait depuis au moins dix (10) minutes ou la température d'alimentation d'eau est inférieure à son
- L'alternance de priorité de démarrage des refroidisseurs à vitesse variable est alternée toutes les semaines afin de maintenir le même niveau d'usure sur tous les
- refroidisseurs. Sur perte de l'état de marche pour plus de 60 secondes, démarrer l'équipement de relève

	Puissance frigorifique	Rendement énergétique de	Dimensions maximales	
Identification	[kW]	refroidissement minimal [kW/kW]	[mm]	
REF_CON-01 (1),(2)	492	3	4800x2300x2400	
REF_CON-02 (1),(2)	492	3	4800x2300x2400	
REF_CON-03 (1),(2)	492	3	4800x2300x2400	

- (1) Intégrer : vanne d'aspiration et de refoulement des compresseurs, sondes de température d'entrée et sortie d'eau, ventilateur statique en haute pression supérieur à 150 Pa, protection contre la corrosion des
- batteries, avec contrôleur de tension et de phases. (2) Intégrer : module de communication : Bacnet/IP, système natif de contrôle avec mode économie d'énergie,
- compresseur à vitesse variable. NB : Les refroidisseurs doivent être de marques similaire.

TABLEAU DU GROUPE DE SURPRESSION PRIMAIRE		
Identification	Débit [m³/h]	HMT [m]
P01-PRM (1),(2)	90	15
P02-PRM (1),(2)	90	15
P03-PRM (1),(2)	90	15
P04-PRM (1),(2)	90	15

(1) Options intégrées : à haute efficacité énergétique, collecteur d'aspiration et refoulement, accessoires, capteur de pression et manomètres, clapets et valves, moteur à commande

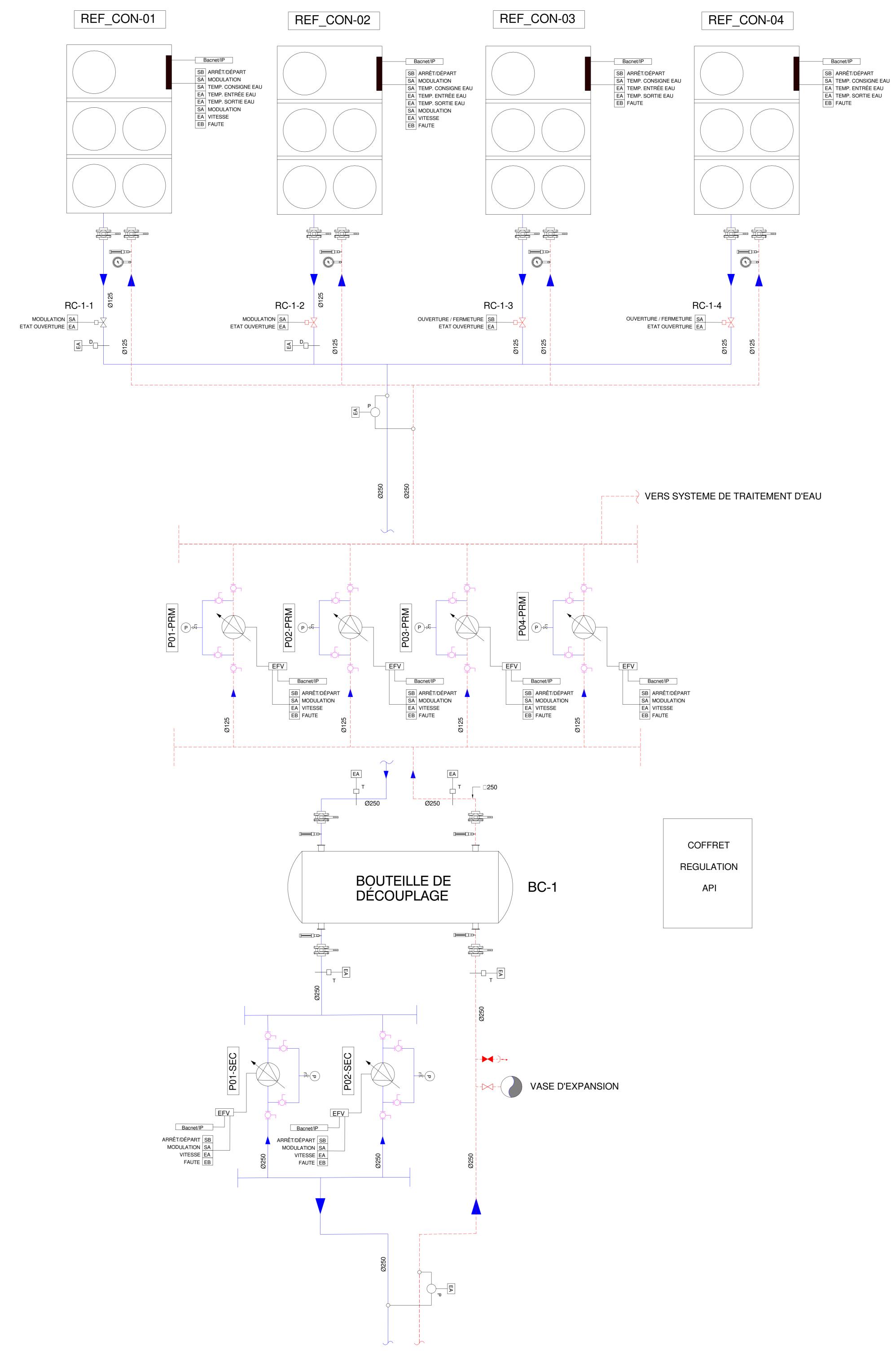

(2) Options intégrées : module de communication : Bacnet/IP, variateur de fréquence, système de contrôle intelligent.

TABLEAU DU	TABLEAU DU GROUPE DE SURPRESSION SECONDAIRE			
Identification	Débit [m³/h]	HMT [m]		
P01-SEC (1),(2)	300	40		
P02-SEC (1),(2)	300	40		

(1) Options intégrées : à haute efficacité énergétique, collecteur d'aspiration et refoulement, accessoires, capteur de pression et manomètres, clapets et valves, moteur à commande

(2) Options intégrées : module de communication : Bacnet/IP, variateur de fréquence, système de contrôle intelligent.

LÉGENDE **VANNE D'ISOLEMENT** THERMOMÈTRE MANOMÈTRE ROBINET DE CONTRÔLE TRANSMETTEUR DE DÉBIT **ROBINET À BILLE** VANNE POMPE THERMOSTAT PNEUMATIQUE INTERRUPTEUR INTENSITÉ DE COURANT DEMARREUR MAGNÉTIQUE TRANSMETTEUR DE DÉBIT VASE D'EXPANSION VARIATEUR DE FRÉQUENCE TRANSMETTEUR ÉLECTRONIQUE DE DIFFÉRENTIEL DE PRESSION ENTRÉE ANALOGIQUE ENTRÉE BINAIRE SORTIE ANALOGIQUE SORTIE BINAIRE REFROIDISSEUR À CONDENSEURS À AIR BOUTEILLE DE DÉCOUPLAGE

RÉPUBLIQUE DU SÉNÉGAL VILLE DE DAKAR

BCEAO CENTRE-VILLE

PROJET DE RÉNOVATION DES SYSTÈMES MÉCANIQUES D'UN BÂTIMENT R+12 À USAGE DE BUREAUX

SISE AU PLATEAU DAKAR

			-			
			_			
	23-01-2024	ÉMISSION POUR ÉXECUTION	M. N.			
	DATE	RÉVISION	PAR			
	Ditte	TIL VIOLOTY	1741			
Н	ELLES GRAPHI	QUES				
	•					
	0	CM DÉTA	IIL \			
						
		PO	OIIN			
lΤ	RE D'OUVRAG	E				
\mathcal{L}	EAO					
ΙT	RE D'OEUVRE					
V	ERJ+					
•						
_	AU					
	AU					
	•	CONCEPTION				
			M NDIAVE			
	•		M. NDIAYE			
		DESSIN				
		•	P.M.FAYE			
		VÉRIFICATION				
			M. NDIAYE			
_		- 0.7710177	IVI. INDIATE			
CANIQUE ET ÉLECTRICITÉ						

Tel: (+221) 33 865 19 19 www.enerjplus.com

Mermoz Pyrotechnique

Dakar, Sénégal

TITRE DU DESSIN SÉQUENCES DE **FONCTIONNEMENT TABLEAUX** LÉGENDE

SYNOPTIQUE

ÉTAGE

ÉCHELLE **FEUILLE** Comme 23-01-2024 indiqué PROJET No BCEAO-C-DKR-001